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1.0 Introduction

The subject of linear optima l approximation has received considerabl e

attention in recent years [4], [5], [6), [7], [8]. The subject of mul ti—

variate approximation for scattered data, including optimal approximations ,

is reviewed in [9). The idea is appealing since the optimal approximation

in a certain space of functions minimi zes the norm of the error functional

for approximations in that space. When the space is a Hilbert space, the

computation of optimal approximations becomes rather simple , in theory [2].

A known reproducing kernel function provides the representers of linear

functionals defined on the space . The optimal approximation satisfies the

system of equations obtained by requi ring that the approximation be exact

for the representers of the functionals being used for the approximation ,

usually point eval uation functionals.

In practice , it seems that optimal approximations have not been used

very much. This is perhaps partly because of a lack of experience wi th them,

as well as the fact that use of the representers as a basis set for optimal

approx imation Is the analog of the use of truncated power functions as a

basis set for univariate spline approximation .

The particular space of functions of two variables to be considered here

are the Sard “corner spaces” , Brp,qi [8). A suitable completion of these

spaces into a Hu bert space and construction of the reproducing kernel was

recently accomplished [1]. Since these spaces are made up of functions whose

partial derivatives , up to a certain order in each variable, are absolutely

continuous, these spaces contain spline functions in two variables , and the

optimal approximations are splines . The Sard corner spaces have the property

that the representers reduce to products of functions of one vari able , thus

‘-4- 
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simplifying matters somewhat. Associated with the Sard space 8rp,ql ~
a base point (a,b) in the region of interest. Whil e this point can theo-

retically be anywhere, practically it is desirable for it to be at one of

the corners of the region of interest (assumed rectangular). There are two

reasons for this; (i) Computation of the representers Is simplified ; and

(ii) the representers have continuous partial derivatives in x only up

through order p — 1 at x = a and in y only up through order q — 1 at

= b , while at other points partial derivati ves in x and y are contin-

uous up through order 2p — 2 and 2q - 2 , respectively. The second reason

is the primary reason we assume that (a,b) is the origin and that we are

only Interested in (x,y) points in the first quadrant.

In connection with the previous paragraph , we note that approximations

in B 1p ,q1 are not invariant wi th respect to translation (unless the base

point (a ,b) is also translated), nor wi th respect to stretching or shrink-

ing of the coordinate system. The author had previously conuTlented that they

were invari ant [3]. The base point (a,b) is the point at which Taylor

series (with remainder) for the functions exist, and the approximations are

clearly dependent on that point.

In the general case, the reproducing kernel function for Brp,qi is of

the form K(a,b;u,v ,x ,y) = gp(a;u,x)gq (b;v,y) where for a � u ,x

9~(a;u~x) (—1 )~(x — u) ,~
2
~ ’~ + z ~(u — a)~~~(x — a)~’~ +

1 <p

(1) i (x - a)~~~
1)(u - a)~~~~~~

} .
Here the notation means w1/i! while

( w
w+

~ O , w < O
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For the case we consider, with a = b = 0, p q , and where the func-

tional s are point evaluations , say at the point (x~,y1 ) , the representers

are K1(x,y) = 9q(O;x jix) 9q(O;Y j
tY)  . As in what follows we have

here used simplified notation for the representer associated with (x 1,y1)

We will consider q = 1 and q = 2 and thus note that g1 (O;x1 ;x) 
= 1 + x —

(x - x1),,. and g2(O;x1 ;x) = 1 + x1x + ~ x1x
2 

- ~-x 3 + ~-(x - x1)~

One observation about optimal approximations is now in order, and shoul d

le’ad to increased interest in their use for approximations where the data Is

i rregularly spaced. The data points themselves generate the rc~ resenters,

and hence a set of basis functions for the approximations. One does not

need to be concerned about whether or not the basis functions have the inter-

pol ation property on the set. Unlike more coniiion basis functions , e.g.,

polynomials , the representers naturally form a linearl y independent set over

the data points. This is not meant to imply that the representers of point

evaluation functional s are wel l suited to computation , however. We treat

this problem in more detai l in l ater sections.

1.1 The interpolation probl em

The underlying probl em we shal l be considering is that of function

approx imation by interpolation for functions of two or more variables. The

case of more than two variables is a straightforward , if tedious , general-

ization , and the discussion is limi ted to two independent variabl es. Assume

that the points (xk,ykt zk), k = l ,...,N are gi ven. No assumptions are

generally made as to the spacing of the points , although in some instances

we will consider special cases. We assume that if i ~ k, (x~,y1) ~ 
(Xk,yk) -

Approximation problems other than interpolation are treated in i dentical

fashion . One obtains the same coefficient matrix for approximate integration

or differentiation , for example.
-6-



2.0 OptImal approximation In B
r1 1 1

In this section we will consider in some detail the problem of computing

optimal approximatior~ in the Sard space B11 11 . Again we emphasize that

the region of interest is assumed to lie in the first quadrant and that the

base point (a,b) is taken to be the origin.

2.1 Representers of point evaluation functionals as a basis

As noted in the introduction , the representers of point evaluation

functionals have the form K
3
(x,y) [1 + x - (x — x~)+][1 + y — (y -

These functions are continuous , with first partial derivatives in x

and y which have jumps at x = x~ and y = , respectively. In each

of the rectangles EO~x~]x[0~Y3]. [0~xj )x[Y~~ o)~ tx~~oo)x[0~Y~] and

~~~~~~~~~~~~ the function is bilinear. In the latter rectangle it takes

on the constant val ue (1 + x~)(l +

Use of the K~(x~Y) as basis functions appears to be suspect. The

coefficient matrix (the Gram matrix) is syninetric, but casual observation

would lead one to suspect it is not particularly well conditioned . We shal l

see that it is better than the author’s inclination toward it. The system

of equations has the form
N

(1) AjK4(xi~Y~) 
= Z j i  I =

j=l

Some numerical experiments were conducted to compute the condition number

(wi th respect to max row sum norm) of some Gram matrices of various sizes.

Points were generated by a random number generator in the square [0,lO]x[O,1O]

the Gram matrix was formed, and the condition number computed. In case (i) the

points were allowed to be anywhere in the square. In case (Ii) the square was

subdivided into (r’~T]2 squares, then one point was generated at random in each

—7—



smaller square, and any remaining points were generated at random throughout

[O,lO]x[O,lO] . In cases (iii) and (iv) the points in (i) and (ii) were

translated to the square t90,100]x[90,lOOJ . In cases (v) and (vi) the

points in (I) and (ii) we stretched over the interval [0,lOO)x[O,l00]

In case (vii) points wi th integer coordinates in [O ,lO]x[O,1O) were selected

by a random number generator. These cases give some indication of condition

numbers and the effects of translation and stretching . No claim is made that

the cited results are representative nor that an exhaustive set of calculations

were made. Other computations , not tabulated here, follow the same trend ,

however. The results of the calcul ations are tabulated in Table 1. Not all

combinations were computed.

Case N + 10 25 50 100
(I) 170 3400 6700 67000
(ii) 420 1500 5700 36000
(iii) ~4UU 4~UOU lb0000
(iv) 3600 37000 200000
(v) 190 3200 8600
(vi ) 600 6100 6200
(vii) 2900 15000

Table 1: Condition Numbers of (K~(x1~Y~)) for B r1 11
One can make several observati ons from the table. First , for moderate

values of N , even up to 50 or 100, satisfactory results can easily be obtained

by computing with the representers as basis functions. Depending on the

accuracy required in the computed answer and the precision one can (or is

willing) to use in the computations , N could be quite a large number , per-

haps as large as is feasible to consider for a global approximation . Second ,

the effect of stretching on the condition number is rather mild. Third , the

translation of the points away from the base point increases the condition

-8-



number , indicating that one should select the base point (a,b) close to a

corner of the region of interest, as we have done.

2.2 A_set of basis functions with compact sup~ort

It is possible to construct a set of basis functions with compact support

which leads to a block tridiagonal system of equations , where each block is

tridiagonal , for approximations in B~1 1 ..1 . Unfortunately the scheme is

practical only in the special instance that the data points lie on a grid.

Such a gri d exists for any set of points , but ordinarily only one point lies

on each horizontal and each vertical grid line . For the scheme to be prac-

tical it is not necessary that each grid point be a data point , but many

points should be on most grid lines . This will be made more explicit after

the development.

We must alter our usual notation slightly. Suppose we have grid points

(x1~~~)~ i = 1 ,..., n , j = l ,....,m . We assume that the x.~ and y
~ are in

increasing order. Denote the set of subscript pairs corresponding to data

points by I . Then corresponding to each (k,L)€I there is a known function

value ZkL . Nondata points on the gri d will be denoted as (i ,j)/I , where

we will always assume that 1 � 1 � n and 1 � j � m

It is easy to obtain functions of one variable of the appropriate form

which have compact support. They are

G1 (x) = 

r 1  ~~ 
g1 (O;xr,x), I 1 ,2,...,n

where as before g1 (O;xr,x )  = 1 + x - (x - Xr)+
- 

l + x 2 1with 
~1l 

- (1 + x1)(x2 - x1) 
‘ a12 = x1 -

1 — 

xi+1 — x i~l _ 
— 1au ..1 x 1_ 1 — x1 

‘ a11 
— 

cx~ — x
~+i

)(xj.. 1 — x1) 
‘ 

— 

x .~ — x~~1
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— 1 — 1
ann l Xn l  - x~ ‘ ann — 

— Xn l

and air = 0 if i — ri > 1 . For convenience , let x0 = 0 and x~~1 
=

then we note that G1 (x~) = as wel l as G1 (x) ~ 0 only over the interval

(x1 1 ,  x1~1) . Al so construct the dual functions H~(y) , wi th

= z 
~~ 

g1 (O;y5,y) . Note that the G~ and are linear B-splines .

To satisfy the interpolation requi rements in terms of the local basis

n m
functions G.(x)H.(y),we obtain the equations ~ ~ a. .G.(x1,)H.(y )

1 
‘~ i=l =1 13 1 i•~ 3 2.

ak ~ 
= z k ~ 

, (k,2.) E I . For (k,.z) 4 I , the products g1 (0;x~~x)g1 (0;y 2.~y)

cannot appear in the approximation. Substituting for G~(x) and H~(~) the

approximation becomes E ~ a.. G.(x)H.(y) = E a . .  E a. g1 (0;x ,x) Z
1=1 j 1  13 1 3 13 r ir r

~~ ~1~°~~~
Y) = E ~~ ~ 

air ~~ 
gi (O;xr,x)g1 (O;ys,y)1 ,3 r,s

We then set the coefficient of gl (O;xk$x)gl (0;y 2.,y) for (k,z) 4 1

equal to zero, obtaining as the system of mn equations for the ~~

( ak,z = Zk,2. (k~~) e I
(2)

~ ~~ 
a.~ aik ~j2. 

= 0, (k,L) ~ I

If we order the equations and variables in some logical fashion , say

p 
(1 ,1),.., (1,m), (2,1),..., (2,m),..., (n,m), for m � n , the fact that

= 0 if Ii — ki > 1 and 8j2. 0 if f i  — > 1 shows that the

-10-



resulting coefficient matrix of the system of equations is of the form

111 112 0 -- -— 0

T21 122 123 0 -— 0

0

~ ~~~ Tn,,

~l1 ~12 
0 —- —— 0

821 822 823 0 -— 0

Where each T1~ = a~1 0

0 8nr—l 8mm

exce~t that a row of T corresponding to (k,e) ~ I is replaced by a new

row with zeros everywhere except for the unit diagonal element.

We can note that 
~~~ 

and 
~jj+l 

are nonpositi ve and except for

j = l  and j = m , 8 11 = -~~111 - 8 11~1 , whi le fo r j l , 8 l1
> _ 8

12
and for j = m , = - 8mm-l . Thus each block ~~ is diagonally

dominant. An interesting aside is that the system (2) looks very much like

the system of equations obtained when solving Laplace ’s equation by f in i te

differenceson a rectangular grid , where a 9 point approximation to the Laplacian

is used . Here , of course, the “boundary conditions ” may be scattered through-

out the region. In this respect the coefficient matrix is wel l suited to the use

of iterative methods for solution of (2).

For the usual case , the above l eads to a system of N2 equations , and the

amount of computation will be too large for even moderate N. Use of a block

elimination equation solver reduces the problem to one of repeated soluti on

of n systems of equations of m equations (usually full , but not always).

— 11—



Al though the original problem can be sol ved in about N3/6 operations , the

new basis requi res about n m3 , or about N4 operations if m = n = N

One should point out , however , that after obtaining the a11 one has sufficient

information to obtain the val ue of the interpolating function by bilinear inter-

pol ation since a~ represents the function value at (x 1~~~)

We will consider the case in which there are several data points on each

grid line. The amount of work required to sol ve (2) decreases somewhat as

the fraction of known grid values increases , however, the major effect is that

the relationship between (n,m) and N changes. Assume that the fraction

of grid points at which data is known is p, 0 < p � 1 . The total number

of data points is then N = pmn , and the number of operations required to

solve (1) is about (pmn)3/6 . For (pmn) 3/6 ~ nm3 we see that

p3 6/n2 , or p ~ ~~~ ~~24~’3 Representative values of these fractions are

given in Table 2 , along with the total number of equations in (1) and (2).

If p is larger than the listed value in Table 2, (2) can be solved in fewer

operations than (1).

n p N mn

4 .721 2.~8m 
4m

8 .454 3.63m 8m

15 .299 4.48m l 5rn

50 .134 6.6gm 50m

100 .0843 8.43m lOOm

1000 .0182 l8.2m l000m

Table 2: Fraction p of grid points to be
known for comparabl e number of opera tions in
so lvIng ( 1 ) and (2).
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2.3 Bas i s functions whi ch are zero in some regions
Because the representers of point evaluation functionals are constant for

large enough values of the independent variables , a certain linear combination

of any two can be made zero for l arge enough values of the independent vari-

ab les . In parti cu l ar , consider K1 (x ,y) and K
1

(x ,y) . The function

(1 + x..)(l + y1 )K
1

(x ,y) - (1 + x
1
)(i + y

1
)K 1 (x ,y) is zero for x ~ max(x1,x3

)

and y � max(~1~~~) - Thus a new set of basis functions with zero values over

part of the region of interest can easily be constructed. It is desirable, to

first order the data points in terms of their “distance ” from the origin. It

seems reasonable to order the (xk,yk) in terms of nondecreasing values of

(1 + xk)(l + 
~~ 

This  is not the only ordering which can be used , but it

carries the assurance that the new 1
th basis function wi ll be nonzero at the

1th point , and also has an added benefit we will discuss l ater.

Assume that the data points are ordered so that = (1 + xk)(1 ÷

k = l ,...,N is a nondecreasing sequence .

Then define L1(x ,y) = :~ :;;~ ~~~~ () , j = l ,...,N -

- 

KN (x ,y)
and LM (x,y) — I~

, 
~~N~ X N~Y N

Then the L1
(x ,y) satisfy L

1
(x1,y1) = 1 , j = l ,...,N and

L1
(x ,y) = 0 for x � x = max(x

1~
x~+1) and y � y~* = ~~~~~~~~~~ j =

Using these basis functions , the interpolation problem requires the so-

lution of the system

(3) 
j~l 

A
1
1
1

(x 1,y1 ) z~ , I = l ,...,N

— 13—



Because of the above ordering on the data points , there is some possibility

of the entry i~(x 1.~~) being zero for j < i , that Is an element below

the diagonal of the coefficient matrix.

The basis functions L1
(x ,y) have a property which is desirabl e and

which arises out of our ordering of the data points .

Proposition: In the first quadrant , 1L 1
(x ,y)I � 1

We note that it is al so true that if p1÷1 < p
1 

, then JL 1
(x ,y)f < 1

except along one of the rays which start at (x1,y1) and extend horizontally

to the right and vertically upward . The proof is simpl e and will not be

given. It consists of considering the value of L
1

(x ,y) at all points where

the first partial derivatives are discontinuous, since any extrema must occur

at such a point . These points are (0,0), (x110), (x1÷1 10), (O,y3
), (O~~ +1)~

(x
1

,y
1

) ,  (x 1,x 3÷1 ) ,  (x
1~~1,y

1
) , and (x1÷1 ,y1~1 ) . Typical function val ues

are shown in figure 1. Recall that in each rectangle L
3

(x ,y) is bilinear and

hence determined by its values at the corners.

H 
-14-



10 -.286 -.857 0 0

8 -.286 -.857 0 o(x 2,y2) = (2,8)

2 
.048 .143 (x 1,y1) = (6,2) 1.000 1.000

.016 .048 .333 .333
0 2 6 10

Figure 2: Va lues of L1 (x ,y)
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Certain behavior can be classified further. For example: (i) if

x14.1 > x1,y1÷~ > y~ , then 1L1(x ,y )I  < 1 except at (x
1
,y
1) ; (ii)

i f  p
1÷1 

= p
1 

, then L1(x ,y) = 0 for x < min (x
1
,x1~1 ) and

y < min(y1,y~÷1 ) and L
1

(x 1÷1~Y~÷1) = -1
The coefficient matrix of the system (3) has its largest element (in

magnitude) on the diagonal , and some zeros may occur below the diagonal .

The data points used to generate Tabl e 1 were used to test the effect-

iveness of the introduction of zeros and to determine the condi tion numbers

associated with the new basis functions . The resul ts are shown in Table 3,

wi th the number in parenthesis indicating the number of leading zeros in

the matrix. By reordering the col umns of the matrix it is sometimes possible

to introduce many more leading zeros , and while a scheme of this sort has not

been implemented , in many cases it would substantially reduce the number of

operations required for solution of the system (3).

The system (3) does not have a synunetric coefficient matrix , and unless

approximately 30% leading zeros are introduced, i t  will take fewer operations

to solve (1) than to solve (3). However, the condition number of the new

coefficient matrix has been smaller in every case examined , sometimes by a

factor of 15 or more, but more comonly by a factor of 2-5. Reordering

column s for a maximum number of l eading zeros will often resul t in 30% or

more leading zeros, based on some hand computations where no effort was made

to obtain the maximum number of leading zeros.

-16-



Case N -~ 10 25 50 100

(1) 36(4) 250(20) 1800(261) 18000(535)

(ii) 32(18) 460(32) 2000(162) 12000(582)

(iii) 1800(6) 2600(39) 30000(315)

(iv) 160(18) 3300(62) 19000(288)

(v) 23(2) 150(20) 1400(195)

(vi) 28(18) 390(16) 1500(105)

(vii) 620(21) 6200(146)

Tab l e 3: Conditi on Numbers of (L
1

(x 1,y1)) and Number of
Leading Zeros ( in Parenthes i s)

3.0 Optimal Approximation in B12~~j

The problem of computing optimal approximations in the Sard space

8 12,21 Is somewhat more difficult than for B
r1 11 . The reproducing kernel

functions are seen to be piecewi se bi cubic functions , reducing to bilinear

functions for sufficiently large val ues of the independent vari ables. We

shall investigate the feasibility of extending the results of the previous

section to Br2,21 in this section.

3.1 Representers of point evaluation functionals as a basis

The representer of the point evaluation functional at the point (x
3
,y
3
) is

K
1

(x ,y) [1 + x
1
x + ~~X1

X - ~~x
3 + ~~x - x~)~~~l + Y1Y 

+ 
~
y
1~ 

y - ~~y
3 + ~ y -

This function is cubic in .x for 0 � x � x
1 , and linear in x for

x > x
1 , and the dual holds In y . These functions Increase rapidly since the

point x .x~ is the inflection point of the cubic in .x , and thus when the

-17—



function is linear in x , it has slope the same as the maximum slope of the

cubic. Because of this , the Gram matrix is not wel l conditioned . Following

a simi l ar path to that taken in the previous section, some condi tion numbers
for the Gram matrix were computed for some sets of randomly generated points.

The results are given in Table 4. The point description column refers to the

descriptions in section 2.1.

Case N -*. 10 25 50 100

(i) 3.94~1O~ 3.5l.l0~ 8.2 7~lO~ 4.58 •l0~
(ii) 3.89.1O~ 1.89.106 4 4 7  lO~ 9.95.108

Table 4: Condi tion Numbers of (K1(x u,Y u ) for

The observations which we wish to make are that :  (1) One will quickly be

in numerical trouble in Real *4 on the IBM 360, and (2) While the condition

number is large, meaningful computations can be done in Real *8.

3.2 A set of basis functions with compact support

A similar construction for 
~12,2] as was pursued for B

11 11 in section

2.2 can be done. There is some question as to what conditi ons shoul d be imposed

on G1, G2, G3 , G4, GN3 , GN_2 , GN_ l~ 
and GN , (as wel l as the corresponding

dual functions H1 ), but several reasonable options are open. In the general

case one wants G1 (x) =
~~

c&jr g2(0;x r,~
) so that G1 (x 1) = 1 , G1 (x) = 0

x < x1 2  or x > x1~2 . Proceeding in similar fashion one will obtain a system

of equations which in block form has 5 non-zero blocks , each block being a

square matrix with 5 non-zero elements per row. Numerically this is somewhat

more complicated than before , but there are instances where it could be useful .
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No details of the construction have been carried out here, but the general-

ization is straightforward. Also note that the G1 and H
1 

here are cubi c
B— spl ines .

3.3 Basis functions which are zero In some regions

It seems natural to be abl e to extend this idea to B
1221 

. The bas is
functions K

1
(x ,y) are bilinear for .x > x

1 
and y • thus it seems

possible a certain linear combination of them coul d be made identi cally zero

to the right and above all points (x1,y1) associated with those five basis

functions. Proceeding in the obvious fashion , ordering the points (xk,yk)

by some rule , we then wish , for j < N - 4 , to construct functions

1+4
L1(x ,y) = 

k~j 
1Jk Kk (x ,y) such that

L1(x ,y) = 0 for x > x = max (x1÷4, x1~3, 
x
1~2, 

x1÷1 , x~)

and y > y = max (y144, ~~~~ y1÷2, y1÷1 , ~
‘1~

and L
1

(x1,y1) = 1 . Unfortunately, if the points (x
1~4,y1~4

) , (x1÷3,y1÷3),
(x
1~21y1~2

), (x
1~11y141

) lie on any bilinear curve, this system of equations

generally has no solution. Thus the ordering imposed earlier woul d at least

have to restri ct one away from four successive points lying on a bilinear

curve. In general , this is not possible .

Because of the rather more restrictive region where the function is zero,

less benefi t Is likely to accrue anyway . In addition , even when one can con—

strict such sets of basis functions , It is not possible to bound the function

L
1
(x,y) as in the B

11 11 
case, and In parti cular It cannot be bounded by one.
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4.0 Concl usions

~~ This investigation ~as~determined that use of the representers of point

eval uation functionals can be used as a basis for some probl ems without en-

countering severe computational problems . For smooth approximations this I s

probably not generally true, however. In addition ,)because the computational

burden for gl obal approximations is likely ~pbe quite large , it is the

author ’s opinion that local approximations must be investigated for smooth

interpolation . The time is perhaps propitious for an investigation into the
underlying mathematica l basis for some previously suggested schemes for local

smooth interpol ation.

The use of optima l approximation s in Sard corner spaces for the inter-

polation of i rregul arly spaced data results in an approximation which has

discontinuities along the lines parallel to the axes through each data point.

This woul d seem to the author to be unnecessarily compl i cated, and the author

intends to investigate global approximations in which the discontinui ties

are less numerous and local in character rather than extending alona lines to

infinity .
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